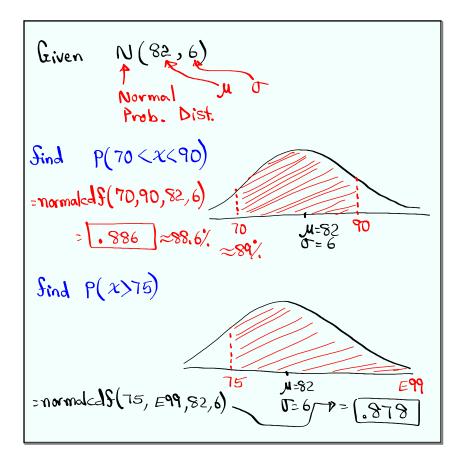


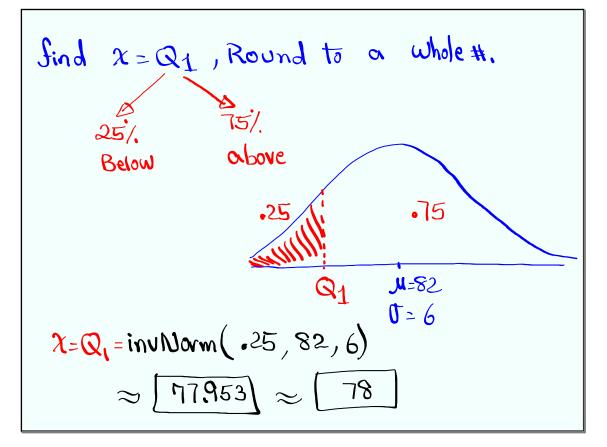
Consider a uniform Prob. dist. for all
Values Srow 8 to 40.
1) Graph & label.

$$3 P(x=10)=0$$

 $\frac{1}{32}$
 $3 P(x<10 \text{ or } x)35)$
 $3 P(x<10 \text{ or } x)35$
 $3 P(x - 0) P(x - 0)$
 $3 P(x - 0) P(x - 0) P(x - 0)$
 $3 P(x - 0) P(x - 0) P(x - 0)$
 $3 P(x - 0) P(x - 0) P(x - 0)$
 $3 P(x - 0) P(x - 0) P(x - 0) P(x - 0)$
 $3 P(x - 0) P(x - 0) P(x - 0)$
 $3 P(x - 0) P(x - 0) P(x - 0) P(x - 0) P(x - 0)$
 $3 P(x - 0) P$

The wait time at a local coffee shop has a Uniform Prob. List with max. wait time of 12 minutes. 1) what is the prob. that ١ 12 Your wait time is below 5 minutes? 0 5 8 12 P(X<5)= (5-0) = 5 2) What is the prob. that Your wait time exceeds 8 minutes? P(x) = $(12 - 8) \cdot \frac{1}{12} = \frac{4}{12} = \frac{1}{13}$ 3) find the time, rounded to whole minute, that Separates the top 10%. From the rest. x = 12(.9)12 0 $\chi = 10.8 \approx 11$ minutes



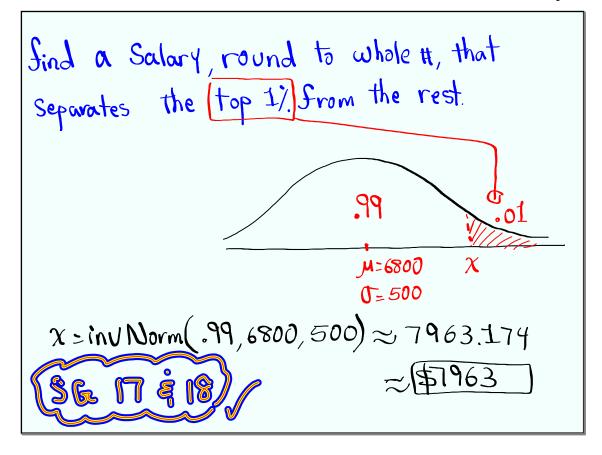


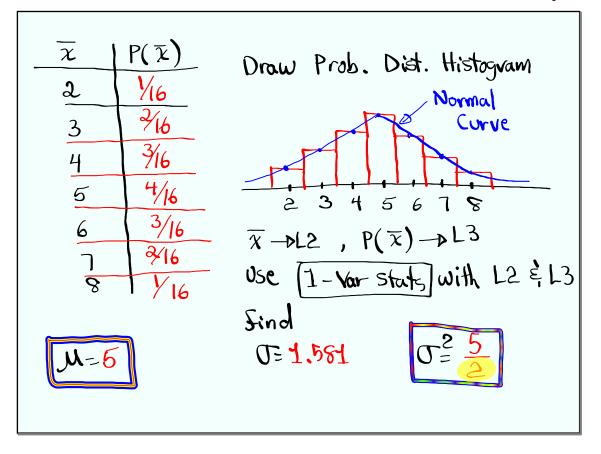
find two Z-values that separate the middle
95% from the rest.

$$1-.95=.05$$

 $\frac{.05}{2}=.025$
 $\frac{.05}{2}=.025$
 $\frac{.025}{.025}$, $\frac{.025}{.025}$, $\frac{.025}{.025}$
 $\frac{.025}{.025}$, $\frac{.025}{.025}$, $\frac{.025}{.025}$, $\frac{.025}{.025}$
 $\frac{.025}{.025}$, $\frac{.025}{.0$

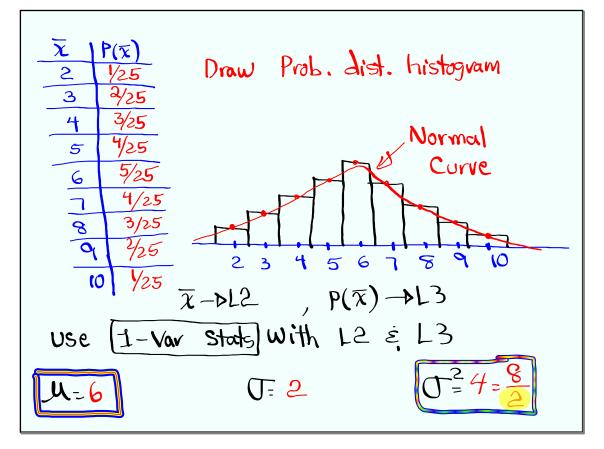
Normal Prob. dist. 1) Use x, P(x=c)=02) Bell-Shape, Symmetric, total Area=1 3) Mean = Mode = Median 4) Mean M & Standard deviation () are both given in the Problem. 5) P(a<x<b) is the corresponding area within the normal curve. How to find it: normaled S(L,U, M, J) ju U α Ь $N(M, \sigma)$ Standard Normal Mean Deviation For reverse invNorm (Left Area, M, J)




Ages of all students at college are normally
distributed with the mean of 32 and stundard
deviation of 7.
$$N(32,7)$$

If we randomly select one student,
find the prob. that his/her age is below
40 Yrs.
 $P(x<40)$
= normalad $f(-E99, 40, 32, 7) \approx .873$

find two ages, round to I-decimal place, that Separate the middle 80%. From the rest. 1-.8 = .1 .8 X1=23.0 M=32 T=7 $\chi_1 = \text{inuNorm}(.1, 32, 7) \approx \sqrt{23.0}$ $\lambda_2 = inuNorm(.9, 32, 7) \approx [41.0]$


Salaries of all nurses in LA county has a normal dist with mean monthly salary of \$6800 and standard deviation of \$500. N(6800,500) IS we randomly select one nurse, Sind the Prob. that his/her monthly Salary is (below \$6000 or above \$7000. P(x<6000 OR x>7000) =1-P(6000< x<7000)M=6800 7000 6000 -1- normal cd S (6000, 7000, 500, 500) $=(.399) \approx 39.97 \approx 407$

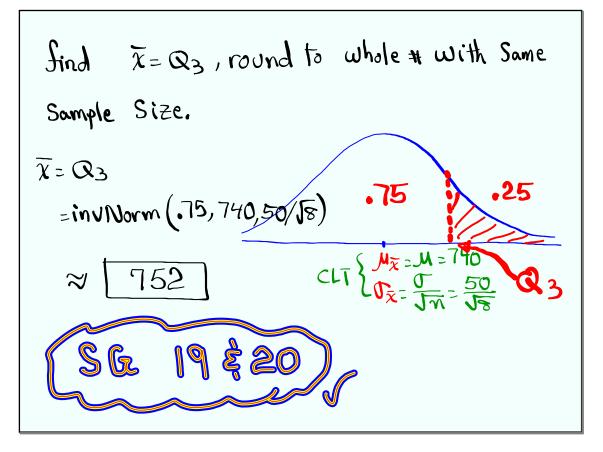
Clear all lists 2nd (+) (1: Clear AllLists) (SC2 19)		
Reset all lists (STAT) Edit (5:SetupEditor) [Enter]		
Store 2,4,6,8 in LI. Use (I-Var stats) with LI only to find		
I = 5		
Take all Samples of <u>Size 2</u> with <u>replacement</u> .		
2,2 2,4 2,6 2,8 find 7 of each Sample		
4,2 4,4 4,6 4,8 2 3 4 5		
6,2 6,4 6,6 6,8 3 4 5 6		
8,2 8,4 8,6 8,8 4 5 6 7		
$\overline{x} P(\overline{x}) $ 5678		
$\frac{1}{2}$ 16 means		
$\frac{2}{3} \frac{\frac{1}{6}}{\frac{2}{6}}$		
3		
$\frac{4}{5} \frac{\frac{3}{16}}{\frac{4}{16}}$ $\frac{3}{16}$ $\frac{3}{16}$ $\frac{3}{16}$		
6 3/16		
× 100 → ×16		
8 Y16		

Clear all lists		
Store 2,4,6,8,10 in L1.		
Use 1-Var Stats	with LI to find	
μ <u>-6</u>	= 2.828 $U = 8$	
Take all Samples of Size 2 with replacement.		
2,2 2,4 2,6 2,8	2,10 $find \overline{x}$ of each	
4,2 4,4 4,6 4,8	4,10 Sample	
6,2 6,4 6,6 6,5	8 6,10 23456	
8,2 8,4 8,6 8,	8 8,10 34567	
10,2 10,4 10,6 10		
$\frac{\overline{\chi}}{2} \frac{P(\overline{\chi})}{\sqrt{25}}$	678910	
$\frac{2}{3}$ $\frac{1}{25}$	25 means	
4 3/25		
5 4/25		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
8 9/25 9 2/25		
10 1/25		

Central Limit Theorem
CLT

$$M_{\overline{X}} = M$$

 $M_{\overline{X}} = M$
Suppose exam Scores of all exams has $M=82$
and $T=8$. If we take all samples of Size4,
 $M_{\overline{X}} = M = 82$
 $T_{\overline{X}} = \frac{T}{M} = \frac{8}{M} = \frac{8}{M} = 4$


Suppose Salaries of all nurses in LA county
has
$$\mathcal{M}=6800 \notin \mathbb{T}=500$$
.
If we randomly select all Samples of 16 nurses,
 $\mathcal{M}_{\overline{\chi}}=\mathcal{M}=6800$ $\mathcal{T}_{\overline{\chi}}=\frac{\mathcal{T}}{\sqrt{n}}=\frac{500}{\sqrt{16}}=\frac{500}{4}$
 $=125$

Ages of all teachers are N.D. with
$$M=52$$

and $T=6$ Yeavs.
If we randomly select all Samples of Size 4,
Find the prob. that their mean age is
between 48 and 55 Yrs.
P(48< $\overline{x}<55$)
= normalcodf(48,55,52,3)
= .750
 $48 \times \overline{x}<55$
 $(17 \times M_{\overline{x}}=M=52)^{-1}$
 $(15 \times M_{\overline{x}}=M=52)^{-1}$

January 28, 2025

find \overline{x} for randomly selected all samples of Size 5 that separate the top 15%. From the rest. Round to whole #. .85 .15 $CLT \begin{cases} M_{\overline{X}} = M = 52^{\circ} \overline{\chi} \\ \sigma_{\overline{X}} = \frac{\sigma}{\sqrt{m}} = \frac{6}{\sqrt{m}} \end{cases}$ $\overline{\chi}$ = inuNorm (.85,52,6/J5) ~54.781 ~55

Credit Scores are normally dist. with μ=740 ž T=50. N(740,50) If we randomly choose Samples of Size 8 applicants, find the prob. that their mean Credit Scores is below 785. $P(\overline{x} < 785)$ $\frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}} = \frac{$ =normalcaf(-E99,785,740,50/Js) $\approx [.995]$ $P(\overline{x})$ 705) =normal 25 (705, E99, 740, 50) $\begin{array}{c} \overline{\mathcal{O}_{5}} & \overline{\mathcal{M}_{\overline{x}}} = \mathcal{M} = 740 \\ CLT & \overline{\mathcal{O}_{\overline{x}}} = \frac{\mathcal{O}}{\overline{\mathcal{O}_{\overline{x}}}} = \frac{50}{\sqrt{5}} \end{array}$ Egg = .976

